

















































































































































































































































































































































































































CHAPTER 5. ELASTIC INTERNAL MULTIPLE SUPPRESSION 121

Using (5.32), I calculated the first term in the multiple attenuation series for BE?IM.

Four traces contribute to this term and are labelled (1) — (4) in Figure 5.4. Also shown
are two copies of the data, B_(;}l. The second of these will have its multiples suppressed

(it will be summed with the elements of B‘S‘”}QIM) while the first will remain untouched

for comparison. Predictably, most of the energy comes from the traces which have Bg}),
and B(SIS) sandwiched between other data components. This is simply because these traces
contain more energy. In Figure 5.5, [ show the same plot with a cumulative sum running
from traces 6 through 2. Trace labels such as B3(2:4) denote a sum from B3(2) to B2(4).
This figure shows how the four multiple suppression traces interact with each other. In the
final sum (trace 2) the internal elastic multiples have been suppressed at rates ranging from
-10 to -20 db (about 60 to 90 %). These rates are comparable to the performance of the
marine algorithm. In Figure 5.6, I compare the elastic demultiple term to an acoustic result
which uses just B(SIF), data. Although the acoustic algorithm does very well in predicting the
time of many of the multiples, the amplitudes are very low. Scaling prior to suppression
may alleviate these differences but the relative scaling of the multiples is inaccurate,

As a final display, all four data components after adding BEE)IM are shown in Figures

5.7 and 5.8. In all of these data, multiples of all phases are consistently suppressed and

primaries are left untouched.

5.4 Discussion and conclusions

Elastic internal multiple suppression is an adaptation of the marine method developed
by Araujo et al. (1994) except using an elastic background medium. This formulation
is applicable to land and ocean bottom multiple component data. Common to all the
inverse scattering demultiple methods, this method suppresses all orders of elastic internal
multiples independent of the earth which causes the reflections. In addition, primaries
are not affected. The data requirements are the same as for free surface elastic multiple
removal. Using a synthetic data example, I have demonstrated that the elastic formulation
effectively suppresses both reflected and converted internal multiples. The suppression

can likely be improved by scaling the multiple suppression terms according to a energy
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minimization criteria after multiple suppression. This may be necessary in practice since
the wavelet is never known exactly.

The significance of using an elastic background formulation is that the relative ampli-
tudes of the reflected and converted multiples are more correct than if the marine method
is used. Since, in the marine method, these relative amplitudes contain more errors, the
scaling procedure will not improve the suppression of both converted and reflected waves
and a tradeoff is therefore necessary. This suggests that when there is a strong mixture of
both P and S internal multiples, an effective multiple suppression technique would be to
record multicomponent elastic measurements either on land or the ocean bottont, remove

the free surface or water column multiples, then apply elastic internal multiple suppression.
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Chapter 6

Conclusions

In this thesis, I have investigated various aspects of the forward and inverse scattering series
- particularly the application of the inverse series for the attenuation of elastic multiples.
As a preliminary, [ presented in Chapter 2 a mapping between the terms in the forward
scattering series and both primary and multiple reflections for simple seismic problems.
The mapping was obtained by calculating the terms in the forward scattering series and
comparing them with well known solutions for simple reflection problems. This analysis
revealed that primaries are described by all the terms in the forward series, whereas a mul-
tiple with n changes in propagation direction is described by the n’th and all higher order
scattering terms. In addition, I demonstrated that for a specific event, the terms beyond its
Born approximation change reflection and transmission amplitude and alter propagation
velocity. By quantitatively identifying those terms which build internal multiples in the
forward series, this work aids in the understanding of internal multiple suppression using
inverse scattering series.

A common consideration when talking about any series is its region of convergence. To
this end, I have also identified the convergence criteria for simple scattering solutions. For
1-D models, the region of convergence is dependent on the contrast between the actual
and the reference medium and on the incident angle; the region of convergence shrinks
with increasing angle. This has implications for performing full inversion using the inverse

scattering series since the convergence of this series is dependent on the convergence of the
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forward series. Despite this fundamental limitation, the series which perform free surface
multiple removal and internal multiple attenuation, including the work in this thesis, are
convergent. This convergence can be said to be dependent on the data being small in some
way. This can be addressed by considering that the input data are scaled by the source
wavelet; hence, their amplitudes are relative to the reflection coeflicients in the earth.
Because these reflection coeflicients are always less than one, the data are also, in a sense,
less than one. This is another way of saying that the earth doesn’t give back more energy
than was initially put in. In practice, the input data can be scaled to avoid instability and,
since the data are limited in time and space, the entire series doesn’t need to be computed
anyway.

In Chapter 3, I developed a 2-D method which removes all orders of free surface elastic
multiples from multicomponent land data without requiring information about the sub-
surface reflectors. Moreover, primaries are not affected. This method is an adaptation of
the inverse scattering method developed for marine seismic data (Carvalho et al., 1992).
The effectiveness of this algorithm was demonstrated using synthetic seismic data for both
one and two-dimensional earth models. Theoretically, the method requires the use of four
component data, a known near surface and a known source wavelet. Synthetic data tests
indicated that the method is effective using data with less than four components and is
robust with respect to errors in estimating the near surface velocities. The method also
requires data that are regularly sampled and contain near offsets. When the source wave-
let is unknown, as it usually is, wavelet estimation techniques used in the marine case are
portable to the land case. Based on synthetic data tests, one of the main conclusions is that
when data are recorded on or in an elastic medium, elastic free surface multiple removal
using multicomponent data gives better results than the acoustic formulation using single
component data.

In Chapter 4, I adapted the elastic free surface method to develop a procedure which
removes multiples from multicomponent data recorded on the ocean bottom. To my knowl-
edge, this is the first method developed specifically for ocean bottom data that removes
all multiples associated with the top and bottom of the water column without requiring

a model of the reflectors below the ocean. As in the case of land data, primaries are not
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affected. Synthetic tests for both one and two dimensional earth models demonstrated the
effectiveness of this technique. The method makes demands on the data type similar to
the land case: regular sampling, known wavelet, and near offsets. In addition, the water
top and bottom are assumed to be flat and the properties of the water column and ocean
bottom material are required. It is assumed that the source is a pressure source in the
water column and that multicomponent measurements are made of the displacement (or
velocity ) at the ocean bottom. Hence, the data need not be four component. The tradeoff
for using two component data is that certain types of multiples cannot be removed. Tests
indicated that the method is robust given errors in estimating the material at the ocean
bottom but is sensitive to errors in water velocity and depth.

An information criterion is common to marine, land, and ocean bottom free surface (or
ocean column) multiple removal. Each method requires information about the reference
medium appropriate to the recording geometry. Table 6 summarizes the information re-
quirements for different data types. The underlying principle is that while these methods
make no assumption about the earth at depth, they rely on being able to correctly describe
interactions with an interface (or inverfaces) which creates the multiples. For example,
since the algorithm for marine data uses a liquid half space reference medium, this method
requires the water velocity and the source and receiver depths. As stated before, all of
the free surface multiple removal methods are sensitive to some parameters but robust
with respect to others. Common to all these methods are the recorded data as input and
knowledge of the source wavelet(s).

In Chapter 5, I extended the theory for inverse scattering internal multiple suppression
{Araujo et al., 1994) to an elastic background medium. Unlike the free surface and ocean
bottom methods, the internal muliiple suppression scheme does not depend on the descrip-
tion of an interface which causes the multiples. All reflector information is obtained from
the input seismic data. In common with the method for marine data, the elastic formula-
tion assumes that the data do not contain free surface or water column multiples. Hence,
the work in Chapters 3 and 4 sets the stage for implementing internal elastic multiple

suppression.

While no subsurface information is required, internal elastic multiple suppression makes
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data type reference medium | required parameters

marine water half space | source and receiver depths:

water velocity

land elastic half space | source and receiver depths;

P and § wave near surface velocities

ocean bottom | water layer over | source, receiver, and water depths;

elastic half space | water velocity and density:
P and S wave velocities and density

of water bottom

Table 6.1: Data type and the corresponding reference medium determines the needed

information for free surface multiple removal

demands on the data that are similar to those for free surface multiple removal. The data
must contain near offsets, four components, be regularly sampled, and contain known source
wavelets.

An important property of inverse scattering multiple suppression for land and marine
data is the ability to suppress multiples without affecting the primaries. I have mentioned
this numerous times but the significance of this property cannot be overstated. The problem
with many multiple suppression techniques, particularly filtering methods, is that while
they do a good job suppressing the multiples, they can also adversely affect the primaries.
In areas with severe multiple problems, for example, areas with a hard water boltom,
filtering techniques are like applying chemotherapy to the data: hopefully the disease dies
before the patient does. For this reason, prediction and subtraction methods are desirahle.
The point to all this is that leaving the primaries intact minimizes a source of error for
true amplitude processes such as AVO and inversion which are applied to the data after
multiple suppression.

Finally, let me reiterate where the work in this thesis fits in witi previous works in
inverse scattering demultiple. The works of Carvalho et al. {1992) and Araujo et al. ( 1994)

were designed for marine data where the source and receivers are located in the water
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column. These methods use an acoustic background medium; however, it should not be
construed that they represent an acoustic approximation to an elastic earth. For example,
the marine free surface multiple removal properly removes free surface multiples which
contain shear propagation in the elastic subsurface. There is no extension to elastic theory
which would improve upon this.

For internal multiples, the situation is more complicated. The forward model for gen-
erating marine data can he described as propagation in an acoustic reference medium and
scattering from points within a perturbation model. This forward model must somehow
generate both P and § primaries and internal multiples. The inverse series can be sim-
ilarly described as propagation in an acoustic reference medium and scattering from the
data. The internal multiple attenuation method is based on a subseries of this inverse series
which, in principle, outputs an elastic earth model. Hence, the mechanics of elastic internal
multiple removal are contained somewhere within the full inverse series. It happens that
the subseries of Araujo et al. attenuates both P and § internal multiples, but is more
effective for P. It may be possible to find terms in the inverse series for marine data which
attenuate both types of multiples equally. This remains an open question.

In contrast with the above works, the methods in this thesis are concerned with data that
are recorded on or in an elastic medium. In that cé.se, the appropriate reference medium
is elastic. Moreover, I have investigated the removal of multiples from multicomponent
data (although the data need not be multicomponent for these procedures to be effective).
Multicomponent data have the benefit of providing access to both P and § primaries which
contain more information about the subsurface than just P primaries. Coupled with this
extended set of primaries are a complicated set of P and S multiples. The work in this
thesis addresses the removal of these multiples so that the most reliable information can

be obtained from multicomponent data.
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Appendix A

Calculated series for 1-D Born

scattering

This appendix contains the calculated series expressions for the first and second primaries
and the first order multiple in Model 2. Using equations (2.40) - {2.42), T calculated the
terms in the series up to eight orders and grouped the terms according to the type of event
that they represent. Here, [ present only the first five orders of terms.

The first primary reflection is given by the series

_ 1k2a; 1 (k2a\® | 5 [kiar\’
orl . — ikzy ivg (221 —2y) (_ p*1 el oYl = g1
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This can be expressed as

PPl (24,24 < 21|k w) = Ryetevetn(®a-a) (A.2)
where
R = [2-2(1 - kgal/yg)llz _ kga,l/ug] _t—n (A.3)
1 kga,l/ug Vo + i '

is the reflection coefficient corresponding to the first interface.
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The series for the second primary reflection is
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where & = kZa/vi. Factoring this equation gives
» thry iwg(2za—2z 1 5 7 21 -
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which further leads to

Ppr2(mg’~g < zll’t" w) _ etkm,jew{)(hn—,l)

R, T (1 +ip2(z0 ~ 2)(11 — 1)

B ved(ze — z1)% (1 ~ 1)? 3 w3822 — 2 )3(n — 1)3

2! 3!
1o2(z2 — - 1"
b (02 = ) = 1) )]
e
— eika:geiug(222—zg)RleTlfeiu(ﬁ(::g—zl)(11—1) — RleTlleik:,, eiU(](z:] —:!,)er[|2(:Q—:l)Tl

— RZTIT{eisz eiuo(Zzi—zy)eiul 2(z2—2)

where 7, = (1 — &;)"/?

interfaces are

2-‘*&1—2 (1'"&1) Vg — I

R]_: - =
1 g + 11
and
R = 2—&2—&1—2\/(1—&1)(1-—&2) v~
2——- ~ - —_—
az — a M1 -+ iy

(A.6)

= 11/vs. The reflection coefficients from the first and second

(A7)

(A.8)

respectively. The transmission coefficients through the first reflector in the forward and

backward directions are Ty = 1 — R; and T{ = 1 + R; . Thus, the sum of terms in

leads to a second primary which has the correct amplitude and propagation velocity.

The series for the first order multiple is

Pmltl(:ﬂg,zg < z1|k;w) — etkmuewo(z(Zzz—z;)-zy)

1., 1A3 T .4 1 Y 3 YAy
[( 6477 B4 512" ) +(322+128 “27 To24 2)"“1

(A.4)

(-t ta s ta)aa (-2 S (-2 )a
62 T332 T g2 )M 128 T 128%™ 512 ) 1
1 g _1—,\3 9 1 ~ L _1._.."2 ~3
* Kaz“”w“z)“ﬁ( 6% 128" T 128% )4
1 3 1., 3)-3
+ -3—2— 640,2 a; wo(zz—zl)-l— 32a2+32 . |a; + ]6a2 Gyl vy(za — 21)
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This can be written as
P’"[“(mg, zg < zmlkjw) = — By(1 — Rf)Rgeikm”ei”"(z(z“z"zl)‘3”)(1 +4(z2 — z1) (71 ~ 1)ivg

dzz — z1)(n ~ 1|20 wod(zg — 2 ) (1 — D]”
RUCEESUEL) I e

_ R](l _ R?)Rgeikmy eiu0(2(2zg—z; )—zg)eiuu4(22—z; v —1)

—— R1(1 - Rf)Rgeikmyeiug(Zzl—zg)eiux4(zz—zl)

(A.10)

giving a first order multiple with the proper amplitude and propagation velocity.



Appendix B

Elastic reflection and transmission

coefficients

In this appendix, I derive the elastic reflection and transmission coeflicients for both an
elastic free surface and an elastic-acoustic boundary. These are needed for the reference
medium Green’s functions for iand and ocean bottom data. I employ the nomenclature
of Aki and Richards (1980) for scattering (reflection and transmission) coellicients [rom a
plane interface. Each coefficient contains an incident phase followed by a scaltered phase.
Hence, PS represents an incident P wave and a scattered S wave. A grave accent’ denotes
a downgoing wave, and an acute accent “denotes an upgoing wave. Thus, PP and PP are

P.P reflection and transmission coefficients respectively.

Free surface reflection coeflficients

The derivation of the reflection coefficients for an free surface has been done previously by
various authors. To name a few: Ewing, Jardetsky, and Press (1957), Aki and Richards
(1980), and Wapenaar et al. (1990}). The derivation shown here follows closely the treal-
ment of Aki and Richards (1980).

The reflection and transmission of waves from an elastic free surface can be solved as
a boundary value problem where solutions for incident and reflected waves are matched

according to the free surface boundary conditions. The boundary conditions for any elastic

144
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interface are continuity of traction across the interface. In the case of a free surface, the
material on one side of the interface is a vacuum. Consequently, the tractions go to zero on
a free surface. Although the atmosphere is certainly not a vacuum, the relative properties
between the air and the solid earth are large enough so that the free surface approximation
is valid.

The first step is to consider a unit amplitude P wave incident on a free surface. The
potential for this incident wave is exp(i(kz + v(z, — z))). Reflection from the free sur-
face creates both a reflected P wave and a converted S wave. This gives the potentials
PPexp(i(kz + v(z, + 2))) and PS8 exp(i(kz + vz, + 7z))) where PP ard PS are the P-P
and P-S reflection coefficients. The displacements for this experiment can be written as

Ue Bm “‘az ei(k:c+u(z, ~z}) ppei(kz-l-u(z, +z))
= + . (B.1)

Uz 0, O 0 P & pilha+uz,+nz))
The tractions are related to the displacements by

T 0 ps| |
_ | pO pla| |u (B2)
T::: Aa;n ‘,((9,, U~

=z

where g us the shear modulus, A is the Lameé constant, ¥ = A 4 2p is the uniaxial strain
modulus, and 7. and 7., are the shear and normal tractions respectively across a horizontal

plane. By combining these equations, the sum of the tractions at the free surface is

—2uky w(n? — k?) P Peilkatvz} Qukv w(n? — k?) eilketra,)
—p(n® ~ K*)  —2pky P §eilkztvzd) —pu(n? — k%) 2ukn 0

=0.
(B.3)

This equation can be solved for the reflection coeflicients PP and PS5 provided that the
phases in the exponentials are equal. This latter condition means that & is the same before
and after reflection, which is simply an expression of Snell’s law. A similar calculation can

be performed for an incident S wave of unit amplitude giving a reflected S wave and a
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converted P wave. The resulting reflection coefficients for both types of incident waves are

4%y ~ (n* — k%)

PP =
vy + (o7 = F)?
ép = 24kn(n' . k“)o i
4k V7?+(7? _k—).' (B 4)
s —4kv(n? — k%) '
- 4k2um + (92 — k2)?
sy WFvn— (" — k)

4k + (07 — K22
Water bottom reflection and transmission coefficients

To derive the water bottom reflection and transmission coefficients, an appropriate model
to consider 1s reflection and transmission from an elastic-acoustic boundary. Continuity
of traction across the interface is again one of the boundary conditions. Since the shear
traction is zero in a fluid, the shear component of the traction is zero at the inlerflace.
Another boundary condition is continuity of displacement. For two media in welded contact,
both the vertical and horizontal displacements must be continuous. At a solid-fluid contact,
the horizontal component of displacement may be discontinuous (but not necessarily zero)
because the fluid may slip past the solid (Aki and Richards, 1980). Barring cavitation, the
vertical component is, however, continuous across the interface. In summary, the three
boundary conditions are: continuity of normal traction and normal displacement across
the interface and zero shear traction at the interface.

There are three types of incident waves to consider. The first is an incident P wave
in the fluid. The second and third are incident P and S waves in the solid. All of these
cases create reflected and/or transmitted P and § waves in the solid and reflected and/or
transmitted P waves in the fluid. Using the same techniques as for the free surface, a set

of equations can be obtained for the three boundary conditions. Solving these equations
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yields the following reflection and transmission coefficients

S wpin(ng — k)

PP
wa
B wprva[BE + Bipan ( — (2 - k¥ + 4?)21/2!;2))
wa (B5\
Y —wpymy /85 + Bipain ((ng — k%) + 41721/2192))
B wa
pp - 2 peva(ns — )
\wa
s dkvivaw®py
P = —~ = 2
S wa
P N A )
wa
<5 AmnkBipa(ni — K?)
$p— —4knavawips
B wa
42 —wipr11a/B] + Biparn ( — (2 - k*)* + 47}21/2132))
B wa

where

Qi = w1/ + Blpan (0 = K2)? + dnguak?) ) (B.7)



Appendix C

(P,S) decomposition and up-down

wave separation

C.1 Land data

Here I the obtain the sonrce and receiver (P, S) decomposition matrices for land data. This
derivation has been done previously by Wapenaar et al. (1990).
I begin with elastic displacement data as in (3.15)

D = G, Vg, . (C.1)
The reference Green’s operators can be expressed in the form
- -1 A —1 p ~ .
Go = —; TG = — T (G§ + GE)IL. (C.2)
pw pw
This follows from the fact that away from the source, V:Gpy = —w?/a’Cpo; hence
V2Gpy = —a?/w*Gpo. Similarly V2Gs0 = —B%/w?Gso. In operator notation then
- -1 - .
vIITT1Gy = — TGy (C.3)
pw

Using this form of the Green's operator, the data can then be written as
= =1 ad , Al 2y —L oy Ad Auls
1 . PP )
= EHT(Gg + GEYW(Gg + GH)IT.

(C.4)
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Applying D to a delta function §(r,) and substituting equation (3.55) into the receiver side
of (C.4) leads to

_1 o0 og
D(mg,z,kc,,z,;w): [Ef‘/_m -[—oo

e~y ly SR PRI 5P itz eivgs’
7 7 ik (z,-a) o 0 PPe*w®  SPetvt i, 0
L II etrtulTy v -+ ¥ dk.g

e~y 5 & Lingzy 5 & ingzg ging’
0 o Plems  $e 0 g

>

. f / V(2 2 [t Go(2" [t w)TT8(x" — r,) dz'dz'dr"dr™ . (C.5)

Here, the vertical wavenumbers refer to propagation in the reference medium. Focussing on
the quantity in curly braces, applying IT% to the receiver coordinates gives different results

depending on which way the waves propagate. Explicitly, this gives

oo . . e~ Wy Iy
. . ik, 1 £ 0
7' G, = gika(zg—2') g g 2iv, ’
- —iy, 1tk 0 e 4
*® g g Zim,

_|_

;N P T ivg
y I s g 2y £170%-1 ettty
ik, —in,| |PPe¥r™t SPe™s 2w, 0 dk,. (C.6)
. ) L sa g - M
wy itk PSei 58ty

oy
O ety =
2111,

Next, the receiver depths are set to zero to simulate surface mounted sources. This reflects
a realistic practical consideration however is not necessary; the decomposition can also be

done with buried receivers (and sources). Setting z, = 0 gives

00 1. . . . Lo LI e:'ug.:J
HTG9=/ eiky(:ry—-:z:')( kg 1y n %kg ing| | PP SP) 2, 0 dk,

—iv, iky| iy, ik, | |BS $35 0
o e“‘jﬂ‘f 0
Zf ezkg(zy—z)(Ng—l) 20y iy dk,. (C.7)
et 0 2iny

Now, except for the N, the quantity on the right hand side of this equation is exactly
the directly propagating Green’s function G§(z,, z, = 0[z', 2'; w) (see equation (3.55)). By
eliminating N>!, II"(G{ + GE) is effectively replaced with GZ and the receiver (P,S)
decomposition and deghosting is accomplished in one step. To reiterate, the steps are:

1) Fourier transform the data over time and the geophone domain; 2) apply N,; and 3)
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inverse Fourier transform back to space and time. The result is just upgoing P and § waves

measured at the receivers. In the (w, ky) domain, the receiver decomposition matrix is

'.:_kz
- 22 L M
_?'ﬁ ‘g )
N = - a =y . Cq
g w? M=k L ( 8)
2ny q

The source side decomposition cuu be obtained in a similar fashion. The objective is to
convert GoII§ to G46 in (C.5). T:« this case, the operator I can be treated as il it operates
on the quantity to the left. This because when G operates on II§, the sifting property of

the delta function acts so that the derivatives are applied to the source coordinate of Gy,

Now
oo gival="20) 0
Go(z", 2"|z,, 2o w) I = / g en) ( e ing( =’ —2q)
mee U 2in,
g g | 2, 0 | | PP SP| |2 0| [e
+ | T s s s e . dk,II. (C.9)
0 £ 0 Zip,| |PS 8§ 0 2.1 0 e
in. in).
Setting the source depth to zero gives
G, = f eik_.(a:”—m,) 2iu, . O'”
oo 0 ”21.'1?_‘ ]
—ik, —iv, 2y, 0 pp Sp st 0 —thy iy,
+ N e , dk,
etk 0 22'?7,_ _P.S' S8 0 21'111,. —in, ik,
® k(e —z) "'5;, 0 -1
— el r] T £ o M_, dk_.,
—oo 0 82',"
. s

=/ e”F e Q2" 2"k, 2. = 0; )M dE, . (C.10)

cO

This equation says that by Fourier transforming over the shot domain, multiplying by the
matrix M,, then applying the inverse Fourier transform, this gives the downgoing P and

S waves at the source. In the (w, k,) domain, the source decomposition matrix is

.03 _ 3 = k?
i B > (C.11)
o |ee | 1

2us, 4

M, =
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C.2 Receiver decomposition for ocean bottom data

For ocean hottom data, the equations are similar to land data. Starting with the equation
for displacement data

- -1 ~ ~ .. - -
D= —0O%GE + GrF)VE(GS + G, (C.12)

pw?

where (G4 + GY°) is the Green’s operator for the water bottom reference medium. A
particular form of the Green's function related to G, will be useful both for decomposition

and for formulating multiple removal. For sources and receivers in the solid, this form is

1 = ik(z,—x
GO(:EQ') Zgl-l"la, 2'5;(.&)) = é";r‘ f € Kzy—zs)
eivzlza—zyl we etvalsatzy) we etz satuzzy)
( Zive 0 B~ — Rbs™m )dk (C.13)
etz 52yl we el satmasyl we gii2l3atay) .
0 o R 55
where
—iV'!g:-unll o s N N LA LYY
b = € 5 [PP-{—ZZ(PPPP—PPPP)] )
e—i:.u.,,(vz+n2) P PR PR
g [SP + ZY(SPPP - SPPP)} :
) (C.14)
e—'1~-wh(92+7?2) PR s oA N - s oson
5= |5 + 23 (BSPP - PPPY)|,
e~ M 2eb p T s oa s
R35 = “5— |95+ 22(35PP - $PPY)|,

in which © = 14 PPZ2%, Z = ¢"12%w_ y and 7 are the P and § vertical wavenumbers
related to the receiver wavenumber, and the subscripts 1 and 2 pertain to the water and
solid. The utility of (C.13) is that it isolates the portion of G} that depends on the source

and receiver coordinates. Substituting this equation into the receiver side of (C.12) and
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operating on a delta function leads to

. . 7 i iug(x'-qyl
~1 [ f= e , itk inpe| |=S— 0
D(zy, 2|2y, 2y w) = — - eklz==") Bivz alel ey
pu —o0 o —o0 -0 —tl’ ik 0 ot

L Firpr

. 1 . ' h
‘1, . we elvalz +3g) we el(i,‘:: tayl
itk —ing PP 2y PSS mim; )
+ G _ Hm dk
iva ik we 2T} pwe R TRl
< sP it $87 2ing

/ f VO 22", 2YGo(r" |2 w)IIS(x" — r,) da'd="dr"de™ . (C.15)

This portion in curly braces can be expressed as

—co —"'?:1/2 tk

o 4 wc i 2z we i(mats )z, ezl =
itk —ins Rycet2?=  Rucell )2y S 0 n
y y t{ 12 n )2, £9)n 2 1112(2'--: )]
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Zinz

Recognizing that the integral without N;l is just the directly propagating (P, 5) Green's
function, it follows that N, is the matrix which transforms the data into upgoing P and
S waves at the receiver 1.e. va(l)éu. As in free surface decomposition, the steps are:
1) Fourier transform the data over time and the geophone domain; 2) apply the matnx
N.:

4; and 3) inverse Fourier transform back to space and time. When the receivers are on

the ocean bottom, z; = z,, and the receiver decomposition matrix in the (w, k;) domain

becomes
22 o
.o—ipr | ok, —ER L oa 17
N, = 2 g9 2un 2pay 1427 C17
g _— 2 2—k2 2 - ( LI 2 )
w TRy n _piky 1-2%
2m g 2p2enm2 1427

It is remarkable that such a simple expression comes out considering the complexity of the
water bottom reflection coefficients. Comparable expressions have also been obtained by

Orsen et al. (1996).



Appendix D

Elastic interface multiple removal

series

In this appendix, I derive in detail the equations for both land and ocean bottom multiple
removal. The steps in the two derivations are basically the same and differ only in the
Green’s funciion which creates the unwanted multiples. I start with the elastic scattering

equations in (P, ) coordinates. The data are modelled by the forward scattering series as
where D are the data in (P, §) coordinates, Gy is the reference (P, §) Greens’ function for

an elastic half space, and V is the perturbation or the model.

An inverse series for V can be formulated as (Weglein and Stolt, 1995)
Vv v@Lv® . (D.2)

where the n’th term is n’th order in the data. Substituting (D.2) into (D.1) and equating

terms that are equal order in the data gives

A

D =G, VAG, (D.3)

0= GV G, + GV WG VIIG, (D.4)
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0= GoVEGg + GoVEAG VDG, + GoV UG VEGE, + GV G, VIE, TG,
(D.5)

This 1s the inverse series which will be used to obtain an inverse subseries which removes

multiples from both land and ocean bottom data.

The form of V, V!, and V()

Before I proceed to solve for terms in the inverse series, certain aspects of the forward
and inverse scattering equations need to be explained or clarified - specifically the form of
the perturbation V. Consider the elastic displacement Lippmann-Schwinger equation in

operator notation (see equation (3.11))
G =Go+GoVG (D.6)
or written in terms of functions

o) oo
Gin(ralriiw) = Guin(ralrii) + [ [ GulealesulVa(e'"5) Gon('lrss ) i

— 00 — o0
(D.7)
where Gin(rglr,;w) is the Green’s function in the actual medium, Goim(ry|r,;w) is the
reference medium Green'’s function, and Vy(r'Ir”; w) 1s the function which pertains to the
perturbation operator ¥ = £o— £. It is not obvious why Vu(r'|r"; w) should depend on four
spatial variables and not two. The reason lies in the fact that V is a differential operator
which means that it has a non-local form i.e. it depends on more than just position. To

see why a differential operator is non-local, it is easiest to consider the variable density

acoustic wave equation

1 L —
(V.P(—I:jv—l_K_(;jw )p(r)—-O (D.8)
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where p is the density, K is the bulk modulus, and p is the pressure. Written in terms of

an integral wave operator, this equation is

Lp= f_ : (v : ﬁav + ?EHMZ) §(r — r')p(r')dx’ = /_ :: L{zrie';w)p(r')dr’  (D.9)

where L(r/r’;w) is the wave function for the scalar wave operator L. The wave equation in
a constant reference medium can be written as Lgp = 0 and can also be expressed as an

integral operator equation

Lop = [ V. »1—V + sz §(r — x)p(z')dr’ = / Lo(r|r';w)p(r’)dr’ . (D.10)
J_oo Po Ky —00

Subtracting cqnations (D.10} and (D.9) gives

]

(V- a.(2)V + ag(r)w?) §(r — ')p(x')dr’ = /:oc V{r|r'; w)p(r')dr' .
(D.11)

(fo-Lip=p= [

—og

where V(r[tiw} = (V- a,(r)V + ag(r)w?) &(r — 1'), a,(r) = 1/po — 1/p(r), and ag(r) =
1/Ko — 1/K(r). Now, since the derivative of a delta function is not, strictly speaking,
a local function, a differential operator is non-local; hence V depends on more than just
position. This has also been discussed by Stolt (1981). If the mass density in the earth
does not vary, then ¢, = 0 and V(r|r’;w) looks like ag(r)w?S(r — r'). Since this function
has values at only r = r', it is purely a function of position and V(r|r’;w) can be written in
the simpler form V(r;w). The lesson is that when wave operators contain both functions of
position and spatial derivatives of functions, this implies a more complex earth model and a
more general form of the perturbation is required. These arguments can be extended to the
elastic case where the wave operator contains spatial derivatives. This justifies writing the
elastic perturbation function as V(r'[r”;w). The same can be said for its (P, S) counterpart
V(r'ir”; w).

While it is true that V§(r — r’) is a non-local function, it is very nearly local. Conse-
quently, it may be possible to use a local perturbation operator in practice. However, by
writing V(r'{r”;w) in as general a form as possible, the perturbation function can account
for very complex earth behaviour not described by a simple differential wave equation.

Recall that V is simply the difference in wave operators between an actual medium and a
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reference medium. Since the form of £ need not be actually specified, it can represent very
complex wave behaviour.

In the following development of multiple attenuation, I also express V() (a, zj2/, z'; w)
with five independent variables: four spatial and one temporal. This follows from the form
of the inverse series which is written as V = V) 4+ V@ 4 ¥® 4. Since the most
general form of V is V(z, z[z/, 2';w), it is reasonable that its constituents should have the
same dependencies. In practice, the additional degrees of spatial freedom may be needed
to describe angle dependent reflectivity and anisotropic effects as a funciion of position.

In general, since the data depend on only three independent variables, only a portion
of V(U can be ‘illuminated’. To perform an actual inversion of the data into VIV, it is
necessary to cast V(1 in a form which depends on three independent variables V((x, 27, z).
This form corresponds to uncollapsed migration. Since migration can be thought of as
downward continuation of the data followed by an imaging condition, uncollapsed migration
involves downward continuation only. The form of V(*) and its implications is discussed in
more detail by Stolt and Weglein (1985). Since I am not explicitly performing inversion,
I can write a general, albeit impractical, form for V(1. The saving grace is that V!
and the multiple removal terms which are denved from it are transformed back into data
space, thus avoiding the issue of how to access a function which depends on five degrees of
freedom.

I should point out that in the following formulation of elastic free surface multiple
suppression, a non-local V(1) is not a necessity - a local operator would work just fine and
the formulation would be the same. However, by using a general perlurbation opcrator,

the multiple suppression algorithm 1s valid for a wide class of earth models.
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D.1 Free surface multiple removal

Determining VU

The first step constitutes a linear elastic inversion where V(1) is solved for in terms of the

data D. To begin, I rewrite (D.3) using the elastic free surface Green’s operator

Dpp Dps _ G% + GEp G%s Vi V3| |G + Cp Gs
Dsp Dss Gp Gdo+ i | |V T G%p Go + G
(D.12)
Expanding out the first term,
Drp = (Gho + Gp) VP (G + G3p) + G3s ViF (G0 + Op) D.13)

+(Gho + Chp) VoY Glp + GRs VY Gl

it is clear that Dpp contains contributions from all of the elements in V(). This is due to
the conversion between P and S energy at the {ree surface. Equation {D.13) also shows that
the scattering history can be determined from the subscripts by reading them from right
to left. Since all of the elements in D depend on all of the elements in V), all elements
in D will be required in order to find just one element in V1), As a preview of things to
come, the multiple removal procedure does not require any direct information about the
earth properties themselves. All information about the earth is contained in V(1) which
is derived from the data. In fact, V(*) can be thought of as representing reflectivity as
opposed to mechanical earth parameters.

Returning to the details of the calculation for Dpp, I write

DPP(A:Q! zglkn Z,;LU) = / f f f dﬂ: dZ dm'dz' .

(o + GE)kos 20k, 2 0) VIR 2, 21", #50) (Gho + Gp)(, 2lh, 213)
+ G5k, 2], 59) Vip (2, 21, /1) (o + GBp ), 2lhsy 245 )
+(Gho + GEp)k, 20/, 73w} Vid(z, 212", 2';0) Glp (2, 2y, 245 )
+ CBs(hs, 25/, 230) Vi3 (v, 218, #50) Cp(a, 2y, 25w)| (D.14)
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which becomes after substituting equations (3.55)

Dpp(k,, z5|ks, 25 w) f f f f dedzda'dz -

(P_PEWJ v+ e “"f'u‘ ;)(PP:,“’ E L‘"'iu‘:")

_1(A_,:c Yyl )V(l)(,B Z]'L z ,w) (ke +u,

2iy, Zei,
“’J~J . , , (]:')j)eiu_..:,. -+ e——fl},:,)
+ r1P—---—e ikyz=ny=) A 0 o a2y w) eitha’tres’) :
2ing sp(®: =l ) 2y,
'P]\Jeiyy:y E—iu_,}:_,, . 3 w' =,
( 9&: ) =ity V(e 2l 2t w) eithes e )P“S'}Tr;
=Ry
“”J ] 1,2,
_i(k-"'m"n-":) (1) o | ! (k z'b . -']Pq"ﬁvw] l) [h
+ SP 22'7?9 VSS (:B,,..'IL, ) 2”} . ( . ))

Recognizing that the integrals in (D.15) represent Fourier transforms, (D.15) becomes

(PPEW”ZJ + e~ W

2y [5}\) BRI Pa _:”"-Vnz-*
) Vlgjb)(kgv_ugjksaua;w)( - " )

DPP( ~g|;°3:z31w):

2t 2w,
- S Yty gy o) L L)
(27 e’”’; L ”””)v;?(kg, vylb i) B
+51" : Vis (k ng\ks,rfe,w)Psmgj . (D.16)

A similar calculation shows that each term in D depends on the quantities

Vi (kg, —vgl ke, s w) ViR (ky, —vglhs, 1)
V}%)(kga_nglkhys;w) VS(}SJ( ) ngkm"h;w)

with different coefficients that depend on kg, z,, k,,z, and w. This can summarized by

(D.17)

writing D(%,, z4|k,, 2,;w) as the product of three matrices
D{ky, zlks, zs;w) = Qulkg, 25; w) V(l](k‘g, kyyw) Qu(ky, 245 w), (D).18)

where

Dpplkg, z,|k,, z4; Dpslk,, z,\ky, 2y, w
D(ky, 251k, 253w) = pr{g 2l @) Deslho 7l ) : (D.19)
DSP(kg,Zglka:zs;w) DSS’(kg;Zg|ka:zs;w)
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(P'peivyzg_i_e-mivﬂ :y) LS"PE_W’E?_
, . — 2wy, 2iny
Qg(‘ll'g! Zg: (-(J) - ps'eiqyzy (Ssei"ﬂ:u-i-e“'."-‘l:fl) ’ (DQO)
2tury, 2iny

VIEB (kgv —Vy k,, Vaj w)v V}gls) (kgv "_Vglkn??s;w)

VO (ky, by w) = , (D.21)
V:?(;J)(‘l‘"‘g:""?glks’”ﬁw) VS(};) (kga _nglksa"ia§‘-"’)
and
(Ppei"s::-‘*_e—-iv.u :.c) S’,P eh{, za
Q,(ks,z,;w) = i ?“’_" e B ) (D_22)
gtta sy (5534 4e w.«-.u)
PS LITIR 2in,

Note the symmetry between the subscripts and the Fourier transform variables in V(1.
This is related to the types of scatiering performed by each of the elements of V(1)

Equation (D.18) shows that the data, which have three independent variubles k,, k, and
w, are related to the product of three matrices each of which also depends on these same
three independent variables. It is this property that allows V() {0 be determined from
measurements away from the scattering region.

The task remains to find the elements of V(*) from (D.18). Since Q, and Q, are both 2
by 2 matrices, their inverses are particularly simple. Pre- and postmultiplying ( D.18) with

these inverse matrices yields

V(l)(kg’ kgw) = le(kga zgiw) D(ky, zglky, zg5w) Qs_l(ksa Zsj W) (D.23)
where
(§5ei9° o= 19 2n) _bpeivi
Qg—l — 1 Zinq N SP 2?:?‘,';; ) (D24)
h &rety iy (PPeivg*y fe— vy g
det Qg —P.S'eziyy T
aud
(Ssei’isza+e—{11»33) 415 eitsza
1 : —S P
-1 2"?". PR Zin, . D.25
Qs det Qs _Pge;u, s L}_:\Pew,:s +e—w..:‘.) ( )
. Ttrg 2iv,

The invertibility of Q, and Q, depends on the properties of determinants of these

matrices. If det Q, and det Q, do not have any zeros over a suitable range of %, then
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Q, andQ, are invertible over that range. By plotting the determinants of these matrices
as a function of k, I found that they are nonzero for (k| < w/a which is the range lor
nonevanescent P waves. As discussed by Claerbout (1985), this is a reasonable restriclion
on k. In addition to invertibility constrainis, the inverse matrices must be stabilized to

avold zeros in the denominators of these functions.

Determining the multiple removal subseries

Carvalho, Weglein and Stolt {1992) derived an inverse subseries which performs surface
multiple removal for marine data. My purpose is to formulate an analogous subseries for
elastic data. Similar to the acoustic case, my aim is to derive a formula for the enlire
subseries in terms of the data. In the elastic inverse series, the reference Green’s [unction
contains two portions: G§ and G%. The latter is responsible for the creation of {rec surface
multiples in the forward series. It follows that Gf must therefore be responsible for the
removal of these events in the inverse series. I select out those termns in the inverse series

which involve only GE and write them as a multiple removal subseries. Hence,

~

@ = _YEETO)

~

YO = _YOEEVY - YMEETR) L YOGETIEETO (1.26)

In functional form, this first equation can be written as

VP(;)(k —vglks, vsiw) V; (2)( tgy —Vgl|Rs, i @)
V ( 779”“8?”8: ) Vssz)( a5 779”"317?3:‘-"’)
oo o f VS (ky, —vylz, 23 w), V”) kg, —igle, 2w
___/ f ‘/ / da: dz dw’ dz.r I"(};)( q Q’l ) {1]( ﬁ'l )
—o0 -0 /oo S —eo Vsp (kg —mglz, 5iw) Vg (ky, —myle, 2 w)
G%P(m,zh’, zl;w) G%S(LE,Z|Z:’, zl;w) V}g_lp) (:.'L"',Z"k_,,!/a;w), VI(J]J(' fa “JIF"H?]!) )

Cp(z, 2|2’ 2w) Gz, zie!, 25w) | | VR (@, 2 ks, vayw)  Vig (2!, 2]k 0 w)

(D.27)
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where I have Fourier transformed over the shot and geophone domains on each side of the

equation. This is done so that V'® can be added to V() in (D.21). The first component
for V' s

fo’(;'ﬁ)(kQJ_Uglknuu = “1 / / / / / dkda dz dz' d2'

(z=z" Ytv(zt2')
Vpp(l (k‘ Vg[ID z, w) PP VPP(I)( Ik-n Vsaw)
?,V
. . ei(k(m—m')+v:'+nz) 1
+ Vpgl )(kg,—yg[:c,z;w) PS - Vpp! )(fazr‘ksa%?“’)
24
D ez'(k(m—a:')+u:+nz’) s
+ VPP(l)(kga_Vglw’Z;w) SP : VSP( J(.’L",z’|k3,y_.,;w)
i
, . pilk(z—a" ) n(z+2"))
+ VpsW(k,, —vglz, 2;w) §S . Vsp(a!, 2'|k
L]

;w). (D.28)

3

Recognizing that the spatial integrals are Fourier transforms, this equation reduces tc

—1 [ pp
V(z)(k — vy ke, vy W) = Z??f dk Vpp(l)(kg, —,lk, v; w)—Vpp (k,wv|k3,u,;w)

ps
+VPS( )( a1 Vgl‘l" W );VPP (k,—V[k,,Us;W)

+ VPP(I)(]"Q: —vylk, v;w) §£ VSP(I)(k, —nlks, vo; w)
i
) $8 .
+VPS (kg;"Vg,-'k:’?iw)EVSP (kv _n|kszys;w)- (ng)

Similar results can be found for Vstz) VI;(;) , and V;g) leading to the matrix equation

V'O (ky, kyyw) = —f VO (E,, kb w)GE(E; )V (&, ky; w) dk (D.30)

where V'3 (k,, k,; w) is as shown in (D.27),

V(IJ(km_Vg!ths;w) VPS( Vglku"?s: )

() (D.3l)
SP (kg: "ngksa V) ‘-") Vss ( 7 _nylk's: s w)

1

V(l)(kg: kyyw) =

and

Gfs(k-w)zwl— PPjiv SP/in (D.32)
o Ar | pSliv  $5/ip
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It is possible to determine the n'th order multiple removal term from V(%) using the recursive

relation
V' (ky, ks w) = f VO (kg by 0)GE(k; ) VO, ky; w) d. (D.33)

This is a consequence of the fact that the exponentials in GE do not contain absolute value

signs.

Data reconstruction and multiple removal

Now that the multiple removal subseries has been found, the next step is to reconstruct data
using this subseries. The reconstruction is done by sandwiching V' between two directly

propagating Green’s functions. This gives the data series
B = GG
=GV L V@ ve L G (D.34)
=D LD LDE 4

The equation for the first term is

DS DLY| |G ViEGs, G, UYGY,

A AL T 1) (D.35)
Dsp D S5 GSDVSP GPD Gso Ifss G
Fourier transforming over the shot and geophone domains, Dg}g becomes
D(l) ('I"Q! Zgllu_” Zg W / f / / d:vdm'dzdz
gl —kgztvg(2—2y)) (1) pilkaz’ +ra(s'~z4))
e-iyﬂz:’l 1 e_iVa-’-n
2'!:1/9 VIE'P)(kQ’—UQIkS?Vﬁ;w) 22'1/,

This is possible because the scattering points are always lower than the sources and receiv-

ers. A similar calculation for the other elements in D’ yields the matrix expression

D' Wk, ky;w) = Rylky, 2g;w) VO (k; w) R, (ky, 25 w) (D.37)
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where V((k; w) is given by (D.21),

e""‘.l”ﬂzfl 0
Rg(kg: k“w) = 2“—’3 e—:’-quy , (D38)
0 2ing

and similarly for R,(k,, z,;w). The matrices R, and R, can be said to project V() onto
data space. From here, I substitute (D.23) into (D.37) to obtain

D’(l)(kg, kyw) = Ry(kg, 24 w) Q;l(kg, zg;w) D(ky, zg|ky, 243 w) Q;  (ky, 2,3 w0 ) Ry(ky, 243 w)
(D.39)

which effectively removes the source and receiver ghosts from the original data. The source

and receiver deghosting matrices have the form

L1 [ (G geinn 4 emin _gh_t
[RQ‘QE;I] (kguzg;w) = d tQ amy ( ) e=ilgty Aty _
tQ, —BSh s (B Peiun 4 gt
(D.40)
and
—1 | .S'Se"’*“ +e'”’“ ~SP
[Q;le] (k,,z,;w) — 1o dpatys ( ) o 4u s ]
cQ, s (P gmivin)
(D.41)
For the second term in the multiple removal series, D®' = GIV®'GE. In Fourier

transform space this becomes
D' kg, 25lks, 24;w) = Ry(kg, 26; )V Ry, ks w) Ra(ky, 245 w)
f R, (ky, 20) VOl s ) GE(k: ) VO, by ) Ry (s, 24; ) dk
/ R gv‘g:w Q (’I"g,zg: )D(kg,zg|k,z,;w)QS_l(k,z,;w)R,(k,z,;w)

. R:l(k,z,;w) Ggs(k;w)R;'l(k, 2g; W)
- Ry(k, 755 w) Q1 (R, 25; 0) D(k, zglks, 245 0) Q7 (s, 205 w) Ro(ks, 25 w) db - (D.42)
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where I have used (D.23) to substitute for V() and (D.30) for V'(*). Expressing the matrix
R;!GE R as H and using (D.39), I obtain

D ®Xky, zglks, 2,5 0) = —/ D(l)(kg,:g|k,z,;w) H(k;w)DW(k, zglky, zyw)dhk (D.43)

where

1 [iwPP wSP ‘
H(k,w)==| ., ol (D.44)
T linPS S8
The term D) removes all first order elastic free surface multiples from the deghosted data

by using the deghosted data to model the events which reflect from the free surface.

For the n’th term in the series, I obtain

D'(">(k9, zg|ks, zo;w) = Ry(ky, 24; w)V’(”_l)(kg, by w) Ry(ky, 255w)

_ _f R, (ky, 21 0) V'O Dk, by w) GE(k: ) VO (k, by ) Rk, 207 0) di

= "‘“f R(kg, 25 w) Qg_l(kg:zg?w) D'{n_l)(kg,zg|k,z,;w)Q:l(k,z,;w)Ra(k,zﬂ;w)
- Rk, 25 w) G (k; w)RS (R, 205 w)
- Ry(k, 25 w) Q;l(k,zg;w)D(k,zg|k,,za;w)Q;l(k,,z,;w)R,(k,,z,,;w)dk

:—f Df("_l)(kg,zg|k,z_,;w)H(k;w)D(i)(k,zg}k,,z_.,;w)dlc. (D.45)

In general, the term D™ removes all events which undergo n interactions with the elasiic
free surface. This includes both reflecied (P-P) and converted (P-5) waves. As in marine
demultiple, the strength of this method is that the only needed information is the near
surface elastic parameters, the source and receiver depths, and the seismic data with the
source wavelet deconvolved. If the source wavelet is not removed from the data, it must be
removed from each term prior to multiple removal. This is discussed in Section 3.6.

It is interesting to see what happens when the reference medium becomes water. In

that case, the data elements that contain shear components are zero and PP reduces to
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-1. Equation (D.43) then becomes

; 1 0 .
DB ky, zglka, 24;w) = 57;/‘ DUl (k,, 2|k, 24 w) 2ive™ =) DOL (L 2 |k, 2,; w) dk

co

(D.46)

which is the equation derived by Carvalho (1992) for marine data.
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D.2 Ocean bottom multiple removal

The steps in deriving the multiple removal equations for ocean bottom data are essentially
the same as for land data. The difference lies in using the Green's function for a water

layer on an elastic half space.

Determining V)

I start with an equation for four component (P, 5) data

DO (2, z,lz,, 2 w) = f f / / dz dz dz" d2"

Ga(zg, 2|2, 2;w) V{2, z|2", 25 ) op(’,es, 50 w) 0 {D.47)
0 P’ 2w, 25 w)
where the scattering points are located below the source and receivars. The source side
Green’s functions describe the P and S energy transmitted throught the water hottom by
the P source in the water column. Physically, the 2 and S waves are transmitted into the
solid at the same time; different explosive sources will give rise to the same relative inix of
P and S waves. Equation (D.47) is therefore an idealized data which will serve as the inpul,
into the multiple removal algorithm. The actval two component data will be processed to
approximate the ideal data using the source and receiver (P, §) decomposition.

Using G¢ from (C.13) and Fourier transforming with respect to both shot and geophone

domains, (D.47) becomes

e--ivgy.zy 0
Vit b x o) = | 2
D( )(flug:zs,llzua)za)w) —_— OJ e_‘.”Zy‘U
Z{T}gy

ngip)(kga_l’@glksayh;w): Vé,lg)(kg,—‘ffzglksﬂ?za}w)
V.Sg;’) (kga _TJZQIk-H Uz, w) V.S(';) (kg: _772g[ks: M2y w)

P Pe ezt 0 ei1alZun=24)

O P‘S\'e”irhnzmb 2!:1«‘15

(D.48)



APPENDIX D. ELASTIC INTERFACE MULTIPLE REMOVAL SERIES 167

or expressed as a matrix equation
D(kg, zg ks, 255 w) = Rg(kg: Zgiw) V(l)(kg: ks w) R_.,(k,, Zg;w) . (D.49)
Obtaining V() ic then a simple operation in (kg, k,,w) space

VO(ky, kyyw) = R;l(kg, zgiw) D(ky, 24| ks, 255 w) ]E-I:l(k,, Zgw). (D.50)

Determining the multiple removal subseries

The same logic which led to the free surface multiple removal scheme can be used to obtain
a multiple removal series for ocean bottom data. The portion of the reference Green’s

function which builds multiples in the forward series is used to select a multiple removal

series from the full inverse series. Hence,

~

VO - _FOGEYO
V' = vOGrvl) - yOGrv' @ - vOGrv O Grevi) (D.51)

For this first equation, I write V'\?) in the same coordinates as V() in (D.48) and using

Gg° from (C.13), I obtain

IVVP(;)(kgu —"’29|kaa Vas; “") VP(;)(kg: _V29|ks: T2s; "")

LVS(;E)(A‘g, '_7729”'731 LT w) VS(;)(kg, _WZglksa"??s;w)

—1 mdk VD (kgy —vaglk, v w), Vg (kgy —vag Ky 72 )

P VD (g, —mglby v 0) VY (Rgy =201, 1125 )
RETP/Q?;VZ R}"fs/QiTIz V}g’) (kr —V2|k_,, Ve, w)a V}£15J (ka _VZIksa M2s; “"’) (D 52)
RS /2ivy RuS/2ms | | VA (B, —malks, vasiw) VA (B, —malky, 72s; )

where I have used the spatial integrals as Fourier transforms. This equation can be written

in the compact form

vm%kﬁﬂ:_f dEV ) (ky, k; 0)GE (k; )V, ky; ) (D.53)

— o0
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where

1| RE/2ive Ry /2,

Gre(k;w) = -
’ 2T | RY (%, RYS/2im

(.54)

A similar process can be performed for all the terms in the subseries leading to the recursive

relation

VD (k,, by w) = _/ IV (e, by ) G (s ) VO (b, s 0) (D.55)

Data reconstruction and multiple removal

The next step is to reconstruct data using V' and directly propagating reference Green's

functions. This gives the data series
B = G 3
=GV L V@ Lve 4 )G (D.56)
DL DO B
The iirst term is just the 4 component (P, 5) data in (D.49). The second terim is
D’(z}(kg, 29|k, 201 w) = Rylky, 2030) V' (ky, kys w) Ry Ky, 2,5 w) (D.57)
which after substituting (ID.53) and (D.50) becomes
Dl(z)(kg’zglkmzs;w) =
_f Ry(ky, 243 w) VB kg, by w) G°(k; w) VI (R, by w) Ry (ky, 2 w) dk
= —-/ DYk, 2,)k, 2, w) R K, 2,5 ) ch(k;w)ﬁgl(k, za;w) DOk, 2.k, 245 w) dbe
Foo
- ‘] DXk, 2,0k, 24;0) I(k; ) DOk, 241k, 20y w) dk - (D.58)
where

. we /DD aim{zgt ) we [ D P ilnezg iz za)
i PPty R%% [ PP etz
J(k. (-b) - Vl etul (z’_z‘wb) 'PP/ PS/

O o (D.59
™ 85/ P3eituntnnn)  Ryg bSemitin) !
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When the receiver is located on the water bottom, I use C.14 and the reflection coefficients

in Appendix B to obtain

(PP +2255)/(n} ~ k?)  2pakamafB} (1 + 27)

I(hyw) = ——elzezm) . . (D.60)
prw?O pan BE(RE —n2) (1+ 2%) (PP + 2288)/ kv,

where © = 1+ PPZ? and Z = e122m,
Proceeding with the data reconstruction for all the termsin (D.56), I obtain the recursive

relation

D’{n)(kg, Zg’ka; Zs; w) = / Dl(nﬁl}(kga zglk: %33 w) J(kr w) D(l)(k‘t z-"lk-” s w) dk. (D61)



